Etron Technology, Inc. Since 1991

2024 Third Quarter Investor Conference

Disclaimer

- The forward-looking statements contained in the presentation are subject to risks and uncertainties and actual results may differ materially from those expressed or implied in these forward-looking statements.
- Etron makes no representation or warranty as to the accuracy or completeness of these forward-looking statements and nor does Etron undertake any obligation to update any forward-looking statements, whether as a result of new information or future events.

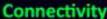
Business Overview

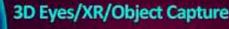
Etron Technology, Inc.

- Fabless IC Design House since 1991
- ▶ IPO in Taipei Exchange, 1998 (TPEx: 5351.TW)
- Patents: USA 315; Total 871 (As of October 2024)
- Number of Employees: 425 (As of October 2024)
- Headquarters : Taiwan Hsinchu Science Park
- Global Location :
 - USA: California Bay Area, Boston
 - Europe : UK, Poland
 - China: Shanghai, Shenzhen, HK
 - Asia: Japan Tokyo, Korea Suwon, Singapore
- World-Class Fabless IC design Company with Creativity and Innovative Products
- Leader in Long-term Dedication to Application-Driven Buffer Memory
- Pioneer of Known-Good-Die Memory Combined with Heterogeneous Integration
- USB4.0 Type-C Switch Chip (20Gbps), Thunderbolt 3 (40Gbps) and Power Delivery (PD3.0 up to 100W) Controller
- Sensing, Recognizing, Comprehending: Multi-Dimensional Sensing Fusion Chips and Subsystem Design Solutions
- Global leading provider of differential privacy computing software and hardware solutions

Etron Group Companies Working with Customers in Multiple Applications

MultipleVisions Computing


Brain: Memories/DRAM+AI Etron 転創料技



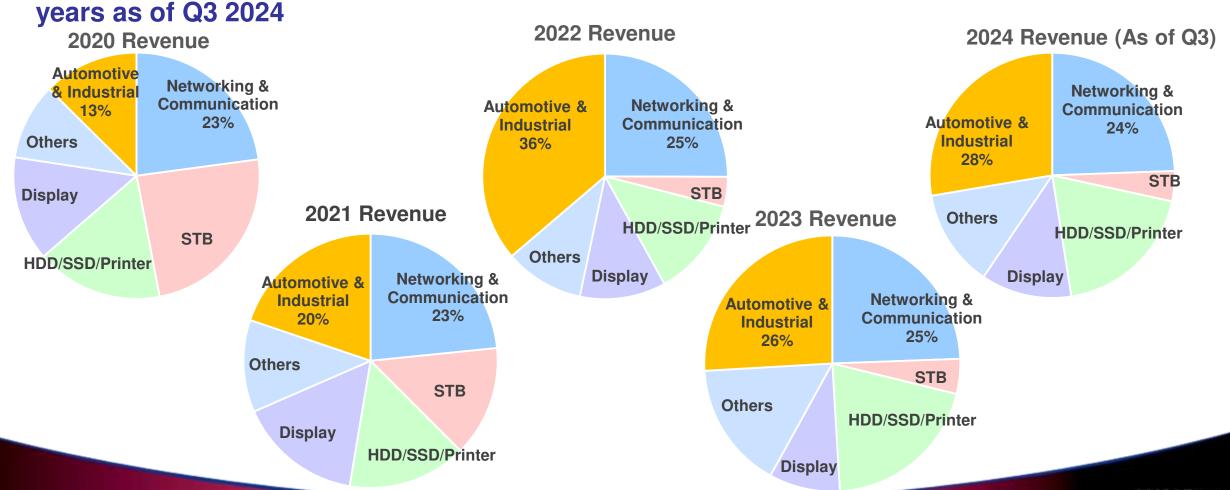
Differential Privacy Computing

Mobile/5G/IOT

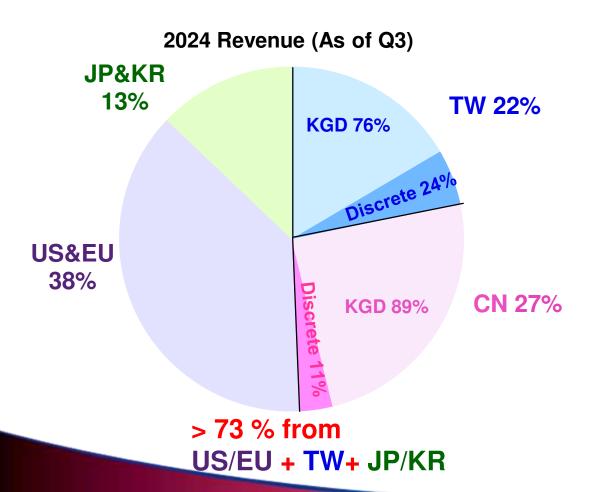
Comprehensive Memory Solutions

Streamlined Memory / Package System

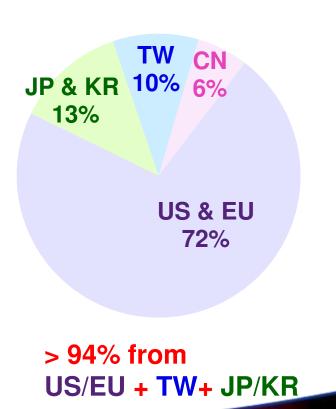
Seamless Integration


33 Years of Innovation: Etron's Value-Driven Specialized DRAM Designs for Emerging AI Systems

solutions.

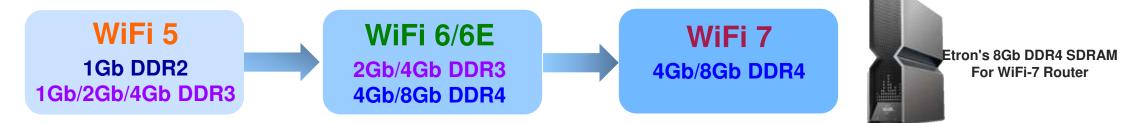

DRAM Revenue (By Applications): 2020 ~ 2024Q3

Continuously focusing on networking and automotive/industrial applications, these two
major applications contributed over 50% of total company revenue over the past three



DRAM Revenue (By Regions): As of Q3 2024

- ●73% of overall business comes from US/EU/JP/KR/TW, slightly higher than in 2023
- •For discrete business, 94% of revenue comes from US/EU/JP/KR/TW



2024 Revenue in Discrete (As of Q3)

Etron: Key Memory Supplier in Telecom Broadband Networking

- Networking accounts for nearly a quarter of Etron's total revenue
- Providing a comprehensive range of DRAM and SPI NAND Flash solutions to meet customer needs from Wi-Fi 5 and Wi-Fi 6/6E to Wi-Fi 7

- WiFi 6E: DDR4 8Gb/4Gb & DDR3 4Gb design-in & MP in Indo-Pacific & EU customers
- WiFi 7: DDR4 8Gb/4Gb approved in WiFi chipset vendor list & sampling in endcustomers
- AVL for major Wi-Fi chipset vendors Qualcomm/ Broadcom/ Mediatek/ Realtek..
- Available for both discrete and KGD DRAM solutions

A Focus on Electric Vehicles and Autonomous Driving

 Etron's automotive DRAM products have been widely adopted in various automotive applications, including Infotainment, Navigator, CD/DVD, HDD, DAB, HUD, Dash Cam, Display, Surrounding Camera, ADAS, etc.

Starting from supporting Japan customers, and expanding to Europe, US, Taiwan, Korea

and China customers

Etron's products are widely used in automotive applications

1			1	
	///		Display	
ADAS	eEver Car Charger 🚭 🖰	Digital Audio Broadcasting (DAB Infotainment		
	Display Osphay GPS Navigator	Car DVD Car HDD	RALLH	
(Front-en	d Camera Car Digital Dashboard		Oisplay Display	
front-en	d Camera Car Digital Dashboard		Display	

Application	SDR	DDR	DDR2	DDR3/3L	LPDDR2	RPC
HUD		V		V		
Car DVD	V					
Car HDD		V	V			
Digital Audio Broadcasting (DAB)	V					
Car Digital Dashboard	V	V	V	V		
Backward-aided Camera		V	V	V		V
Front-end Camera		٧		٧		V
ADAS		V		٧		V
Infotainment				٧		
Dash Cam	V	V	V	V	V	
GPS Navigator	V	V	V	V		
Display		V	V	٧	V	

Etron

Continuously Expanding Product Portfolio to Provide Customers with a Diverse and Enriched Selection • Since launching its first SDR product in 1998, Etron has continuously expanded its memory

 Since launching its first SDR product in 1998, Etron has continuously expanded its memory product line to encompass SDR, DDR, DDR2, DDR3, DDR4, LPDDR2, LPDDR4/4X, RPC, SPI NAND, and e.MMC, along with KGD and Discrete solutions. The company is committed to delivering high-quality products, exceptional service, and long-term customer support

DRAM	90	OR.	2	DDR			DDR2			DD	Ra			DDR4		LPDDR2		LPDDR4/4X	U	RF	PC
DIMAN	63nm	38nm	63nm	45nm	38nm	45nm	28nm	25nm	38nm	25nm	20nm	1snm	25nm	20nm	1xnm	28nm	25nm	20nm	1xnm	38nm	20nm
16M					No particular.	444.404.444	VOC. NAME OF	A PARTIE A	North Control of the	55.57 in 02.550			SCHOOL STANSON	C. Ottoway		Example Call Co.		F. 082.04000		Control of the Contro	C. GO EIGH
32M												× '			Ŷ				Ÿ ·		
64M									12												
128M	- 3								1		0		1								
256M																					
512M																					
10																					
20																					
46																					
86									1												
169									17						4					7	
326									. 8						9						

Plash	SPIN	e.MMc	
Plasts	1.87	3.3V	3.3V
160			
200			
406			
909		-	
3206			408
64Gb			808
12866			1600
286Gb	ļ.		3208
512Gb			6468
1024Gb			12868

- In response to GenAl era, Etron is developing DWB (Direct-Wide-Bus) DRAM to provide high bandwidth, low power consumption, and low-cost Al memory for LLMs in edge computing
 - Providing the total solution of DWB DRAM+PHY+Controller
 - Effectively reducing power consumption for both DRAM & Memory Controller by unique DWB design
 - Scalable design: The min. capacity is 4Gb, expandable to 32Gb and achieving102.4GB/s bandwidth

Multi-Streaming Processor- EJ523D

- Integrated Full-Function SCALER: Up-Scaling/Down-Scaling; PIP; POP; OSD; MIRROR
- Support Audio re-sampling, Mixer, and 5.1 channel support
- Support HEVC 10bit HDR Encoding
- Support USB capture NV12 4K/30 \ 2K/120 ; HEVC 4K/60 \ 2K/240 ; H.264 ; MJPG

For live game streaming, e-commerce, online meetings, education, and more, this market is estimated to

be valued at USD 13.94 billion this year, with a projected annual growth rate

USB E-MARKER IC- EJ903

- According to an analysis report from market research firm Omdia, the annual shipment volume of devices featuring USB-C port designs continues to grow, with handheld devices having particularly high numbers. Overall, the estimated shipment volume is expected to exceed 6 billion units by 2027.
- The only manufacturer in the world certified for both USB4™ and Thunderbolt™ 4.

 Customers using the EJ903 E-Marker have all successfully passed Intel certification to obtain the lightning bolt logo on Thunderbolt cables, including several world-class cable manufacturers.

From "Eye" to "Brain"

Work our way up from Vision to compute with AI through Silicon centric technology and Application specific Designs

Under the wave of AI, combining special memory, generative AI, multi-dimensional sensing, and fusion technology to meet "Sense & React!"

Stereo Vision Sub-System

Camera Use Case

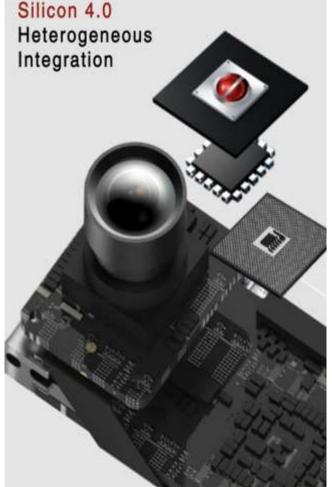
Obstacle Detection CUSTOMER EXAMPLE

G53

Application Requirements

High Frame Rate + Accuracy

Depth of VGA IR cameras at 30 FPS & Active IR projection performance from 10CM up to 1.5 Meters.


Detecting

- Obstacles in the path of Robots at short range.
- Robust surface resistance.

Stereo Vision Sub-System

Camera Use Case

OBSTACLE AVOIDANCE

G62

Application Requirements

High Frame-rate + Accuracy

Depth of VGA IR cameras at 30 FPS & Active IR projection performances from 10CM up to 1.5 Meters.

Detecting

- Obstacles in the path of Robots at short range.
- Robust surface resistance.

Sensing Sub-Systems

Sensing & From Perception to Understanding

eYs3D Signal Processor(eSP)

USB 2.0 / 3.0 Bridge with MIPI out
VGA up to 3M Pixel Hardware ISP
Dewarp/Rectify
Stereo Depth Engine
MJPEG Compression

eYs3D Computer Vision(eCV)

Cortex-M / Cortex-A CPU

NPU or TINYML from 0.2~4TOPS

Up to 12M Pixel Hardware ISP with HDR/
WDR/ Dewarp and Rectification

Optical Flow Processing

H.264 Encoder

2025 Onward

eYs3D Neural Processor(eNP)

Cortex-M / Cortex-A CPU
CNN & Transformer Support NPU
04 TOPs to 40 TOPs
USB 3.0 TX/RX & MIPI OUT

SPECIAL

AT-MEMORY COMPUTE EFFICIENT COMPUTE WITH "ON-NPU" DRAM

Lower Power. High Throughput

Efficient Architecture Domain Computing Cortex-M

TRANSFORMER Model Enabled

LLM Models

UP to 8B At 35 Tokens/S Llama, Phi-3, Gemma2, Mistral and more

Next-Gen Human Machine Interface SENSE

Future intelligent human machine interactions

Combining 3D sensing, computer vision, large language models (LLM), and convolutional neural network (CNN), we utilize sensing technology to recognize the environment. CNN is employed to assess the scene and environmental conditions, while LLM grants action commands and prompts to operate machinery and interact with users, thereby enhancing the user experience.

Combining visual language models with robotic control

By AI chip with LLM, integrated CNN, verbal commands can be used to control robots to execute tasks, creating a new human-machine interface application. This technology can be applied in various fields, including smart homes, industry, and healthcare.

Scalable for Wide
Applications
Single to Multi-core for Multi-Tasks

DøCloak

Privacy-Enhencing Products Received CES Innovation Awards

DøCloak<mark>Face</mark>

Easy to Add-on

Free consultation and assessment for application requirement.

DeCloakFace is not subject to device condition settings and supports multiple platforms. Making it easy to add-on to existing devices and platforms.

Safe and Compliant

Through DeCloak's de-identified technology, identity verification can be done without personal data. No facial images will be stored on cloud or premise to avoid data theft.

Cloud/Edge Computing

Through cloud and edge computing, efficiency is greatly improved compared with the general traditional method. Any image data processed will be obfuscated while maintaining over 99% of identification accuracy.

DeCloakFace
Solution
Application
Scenarios

Digital Finance & Insurance

Through privacy protection of facial images, identity can still be accurately verified; making online banking transactions and online insurance signing smarter and safer.

Smart Medical and Health Care

Prevent personal information leakage through obfuscated facial image recognition and combining SOE cloud file searchable encryption engine for secure data retrieval to enable intelligent and privacy-protected medical and health care.

Smart Digital Access Control

Integrating access control system of the enterprise to accurately identify employees and non-employees through cameras under complete protection of facial image privacy.

Smart Digital Retail

By tagging and labelling target audiences with consumption behavior to activate marketing campaign efficiency through facial recognition.

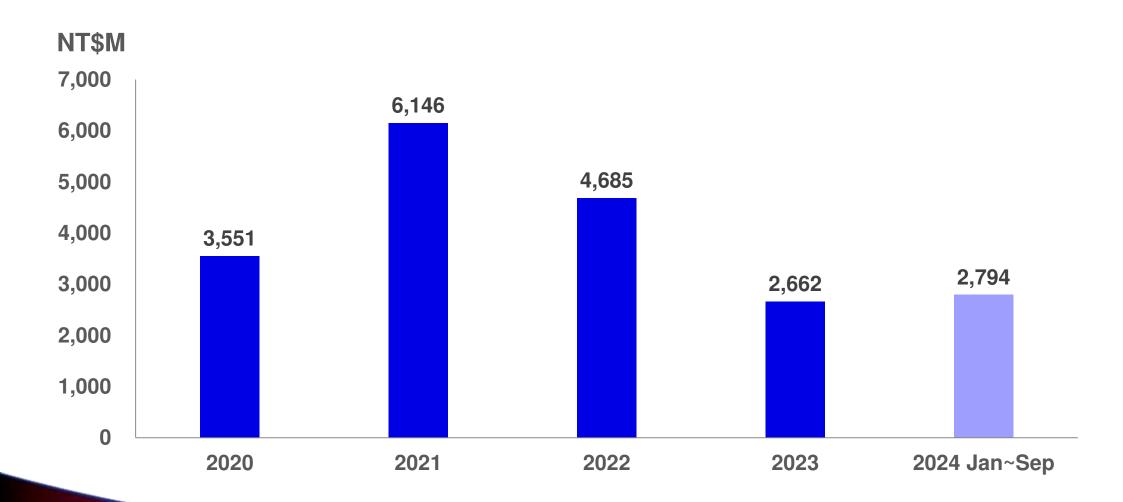
Smart Attendance System

Accurately record working time through facial recognition system to eliminate identity-replaced card swiping. Extinguish loopholes in personnel management and further evolve overall attendance system.

D Cloak Fields Entered

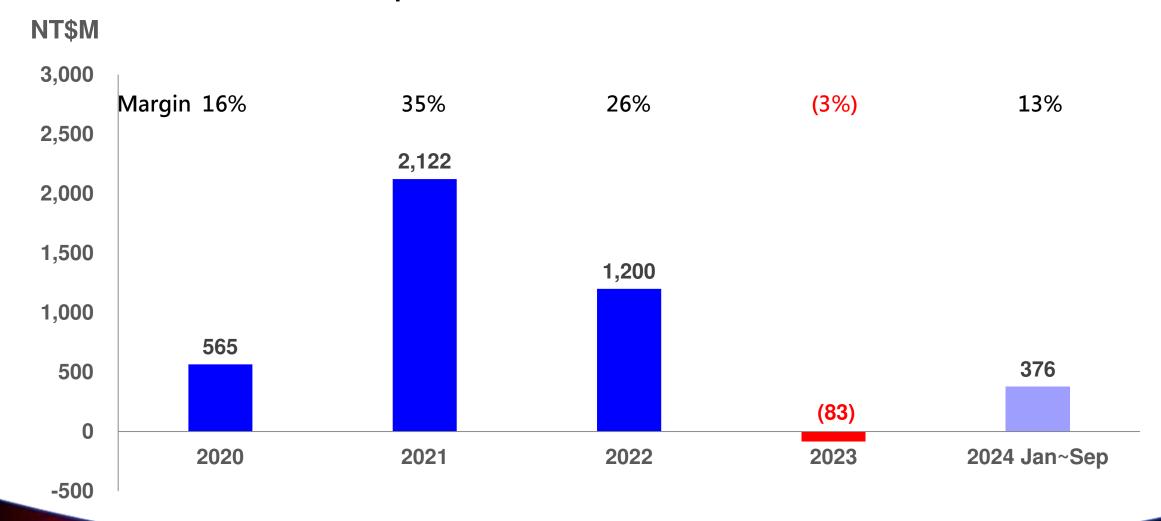
Smart Access Control Smart Digital Retail Smart Vehicle System

- DeCloak has successfully integrated surveillance systems for enterprises and retail shops, ensuring facial data privacy is fully
 protected while the targeted person can still be accurately identified through the lens.
- DeCloak is currently cooperating with a Japanese company to co-develop next generation surveillance system bundled with trustable multi-modal AI enhancing human for chain drug stores in Japan.
- DeCloak has successfully integrated DeCloakFace with Driver Monitoring System, to introduce biometric de-identification into existing DMS products to strengthen driver privacy protection.


Smart Medical and Health Care

- To prevent personal information leakage through obfuscated facial image recognition, and paired with SOE cloud-based secure file retrieval system to ensure medical care is smarter and safer.
- DeCloak has signed MOU with a mid-sized hospital in Taoyuan and integration completed in 1Q2024.
- DeCloak has deployed its DeCloakFace and DeCloakVision in a sizable hospital in Hsinchu, aim to complete all integration by 2024Q4.

Financial Summary



Consolidated Operating Revenue

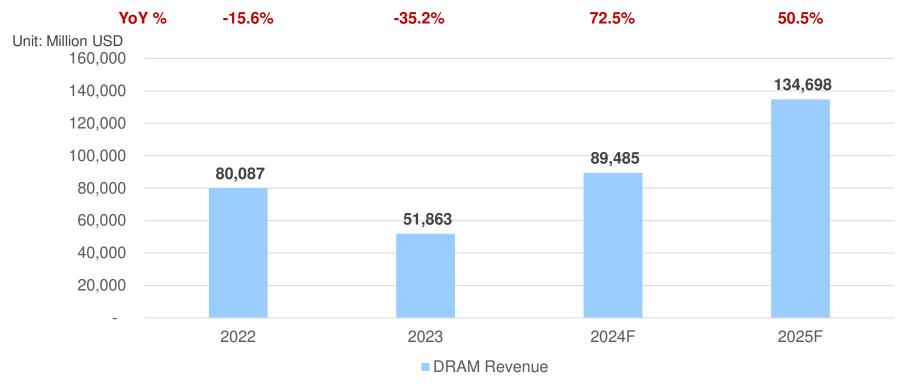
Consolidated Gross profit

Consolidated Statements of Comprehensive Income

Expressed in millions of New Taiwan dollars	3 Q 24	2 Q 24	3 Q 23
Operating revenue	929	1,018	661
Gross profit (loss) from operations	166	162	(56)
Gross margin from operations	18%	16%	(9%)
Operating expenses	(304)	(297)	(286)
Operating loss	(121)	(118)	(326)
Non-operating income and expenses	1	(15)	25
Profit (loss) attributable to Owners of the parent company	(105)	(112)	(276)
Basic (losses) earnings per share (in dollar of NTD)	(0.34)	(0.39)	(0.96)
EBITDA	(53)	(62)	(231)

Consolidated Balance Sheet

Expressed in millions of	Sep.30), 24	Dec.3	31, 23	Sep.3	0, 23
New Taiwan dollars	Amount	%	Amount	%	Amount	%
Cash and cash equivalents	1,253	17	707	10	620	8
Accounts receivable	917	13	646	10	767	11
Inventories	2,320	33	2,782	41	3,048	42
Total current assets	4,579	64	4,246	62	4,574	63
Total non-current assets	2,525	36	2,584	38	2,711	37
Total assets	7,104	100	6,830	100	7,285	100
Current liabilities	2,376	34	1,992	29	2,096	29
Long-term liabilities	291	4	1,356	20	1,438	20
Total liabilities	2,667	38	3,348	49	3,534	49
Total equity	4,437	62	3,482	51	3,751	51
Financial analysis highlights						
Liabilities ratio	38%		49%		49%	
Current ratio(times)	1.93		2.13		2.18	


Consolidated Statements of Cash Flows

Expressed in millions of New Taiwan dollars	2024 Jan~Sep	2023	2022
Cash and cash equivalents at beginning of year	707	842	1,277
Cash flows from operating activities	119	(67)	(1,306)
Cash flows from investing activities	(169)	95	(264)
Cash flows from financing activities and others	596	(163)	1,135
Cash and cash equivalents at end of year	1,253	707	842

Prospects

Global DRAM Market Outlook

 Driven by the growth of high-end products such as HBM, DDR5, and LPDDR5, the global DRAM market is expected to reach nearly US\$90 billion in revenue in 2024. Moreover, overall revenue is forecast to grow by more than 50% in 2025, reaching US\$134.7 billion

Source: DRAMeXchange, Oct. 2024

Business Outlook

Q4 2024 Outlook and Opportunities

- While high-end products like HBM and DDR5 continue to drive DRAM market growth this year, demand for specialty DRAM products remains relatively flat
- In the long run, the three major DRAM manufacturers have been focusing on HBM and DDR5 production, gradually reducing the supply of specialty DRAM products. Once demand for the specialty market recovers, Etron is expected to benefit

Future Growth Drivers

- Networking and automotive/industrial applications remain Etron's key focus areas.
 With the increasing penetration of WiFi 6/6E and WiFi 7, as well as the expansion of electric vehicles and automation, Etron is poised for continued growth
- Moreover, as generative AI applications shift from cloud to edge, Etron's MemorAiLink platform is well-suited to support this trend. The diverse applications driven by edge AI are expected to fuel the company's future growth

Q&A

